
N. Streitz, A. Kameas, and I. Mavrommati (Eds.): The Disappearing Computer, LNCS 4500, pp. 161 – 181, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Ubiquitous Computing Applications Composed
from Functionally Autonomous Hybrid Artifacts

Nicolas Drossos1, Irene Mavrommati1, and Achilles Kameas1,2

1 Computer Technology Institute, Patras, Greece
2 Hellenic Open University, Greece

1 Introduction

People are an intrinsic part of a Disappearing Computer environment; it is their ac-
tions and behavior, their wishes and needs that shape the environment. People have
always been building “ecologies” in their living spaces, by selecting objects and then
arranging them in ways that best serve their activities and their self-expression. Ac-
cording to the Ambient Intelligence (AmI) vision (ISTAG 2006) people will be able
to build more advanced “ecologies”, also known as UbiComp applications, by con-
figuring and using “augmented” objects; these objects may be totally new ones or up-
dated versions of existing ones. An important new aspect of AmI environments is the
merging of physical and digital spaces, i.e. tangible objects and physical environ-
ments are acquiring digital representations. The traditional computer disappears in the
environment, as the everyday objects in it become augmented with Information and
Communication Technology (ICT) components (i.e. sensors, actuators, processor,
memory, communication modules, etc.) and can receive, store, process and transmit
information, thus becoming AmI objects.

AmI objects are considered to extend the functionality of physical objects, which
nevertheless still maintain their physical properties and natural uses i.e. an “aug-
mented desk” is still a desk that can be used as such without any dependencies from
other objects or environmental factors. The artifacts’ dependence on a source of
power is another factor that determines their autonomy, but it will not be dealt with
in this chapter.

When thinking of UbiComp applications for everyday life, it comes out that almost
every object, be it physical or software, portable or stationary, resource constrained or
not, can potentially become an AmI object and participate in such applications. This
means that AmI objects may have to exchange data if combined in the same applica-
tion, although they may be created by various manufacturers, using various, often
proprietary software or hardware technologies or protocols. This heterogeneity factor
constitutes a key challenge for systems aiming to support the composition of Ubi-
Comp applications.

Another important challenge is the dynamic nature of UbiComp applications deriv-
ing both from the dynamic and ad-hoc way that people use UbiComp applications and
from the fact that AmI objects are susceptible to failures (e.g. hardware, communication
etc.). Thus UbiComp applications need to be easy-to-use for a wide range of users,
adaptive to contextual changes, robust enough and fault-tolerant. Scalability is also a
tough issue, since UbiComp applications usually involve a large number of participat-
ing AmI objects.

162 N. Drossos, I. Mavrommati, and A. Kameas

In the end, the human element can be catalytic for the whole system: one of the
factors that can cause “emerging” and previously unforeseen functionality is the in-
herent human creativity and the human capability for problem solving and expression.
Nevertheless, this relies on people’s willingness to adopt ubiquitous computing tech-
nology and their understanding of it, the technology’s learnability, flexibility and
openness for adaptation.

Adoption depends on understanding, which is a two-way channel between two
seemingly distant terrains: technology providers have to understand people’s needs
and wants; people have to understand the capabilities, limitations and use of the new
technology. The research that is described in this chapter aims to create a conceptual
framework that will increase the bandwidth of the “understanding channel” and pro-
vide the technological platform and tools that will support the development of Ubiqui-
tous computing applications.

2 An Overview of Existing UbiComp Approaches

Building and supporting the operation of UbiComp applications is a demanding task,
as it comes up against a number of challenges inherent in distributed systems; more
constraints are imposed, new parameters are introduced, a wider user community is
targeted, to mention but some. Some of the major requirements a UbiComp system
has to confront are: mask the heterogeneity of networks, hardware, operating systems
etc.; tackle mobility and unavailability of nodes; support component composition into
applications; context awareness; preserve object autonomy even for resource con-
straint devices; be robust, fault tolerant and scalable; adapt to environmental
changes; and be usable by novice users via understandable designed models.

In this section, we shall briefly present several different approaches that deal with
the open research issues of the UbiComp paradigm. We have grouped them based on
a set of broad research areas, which nevertheless covers the UbiComp domain: middle-
ware, architecture, user tools, applications and integration; in this chapter we do not
concern ourselves with hardware issues and communication / networking protocols.

Research efforts on user tools try to ease the process of development for end-users
who have little or no programming experience. The work by Humble et al. (Hum-
ble 2003) for example, uses a “jigsaw puzzle” metaphor in the Graphical User Inter-
face (GUI). Individual devices and sensors are represented by puzzle piece-shaped
icons that the user “snaps” together to build an application. While this metaphor is
comprehensible, the interactions are simplified to sequential execution of actions and
reactions depending on local properties (e.g. sensor events), which limits the potential
to express many of the user’s ideas. Similar approaches can be seen in the work of
Truong et al (Truong 2004) that provides a pseudo-natural language interface, using a
fridge magnet metaphor, and also in the browser approach of Speakeasy (Ed-
wards 2002), where components are connected using a visual editor based on file-
system browsers.

In (Jacquet 2005) is presented a clear conceptual model for ambient computing
systems together with an architecture that introduces a high-level mechanism to ab-
stract context and allows the rapid construction of ambient computing applications.
The model uses a well-defined vocabulary and tries to map the physical and virtual

daisy
Rectangle

 Towards Ubiquitous Computing Applications 163

world to elementary component objects, which can be interconnected to form applica-
tions. The architecture however, limits the real world’s representation to sets of sen-
sors. This restricts the model’s scope, while components loose their autonomy.

Other research efforts are emphasizing on the design of ubiquitous computing ar-
chitectures. Project “Smart-Its” (Holmquist 2004) aims at developing small devices,
which, when attached to objects, enable their association based on the concept of
“context proximity”. Objects are usually ordinary ones such as cups, tables, chairs
etc., equipped with various sensors, as well as with a wireless communication module
such as RF or Bluetooth. While a single Smart-It is able to perceive context informa-
tion from its integrated sensors, a federation of ad hoc connected Smart-Its can gain
collective awareness by sharing this information. However, the “augmentation” of
physical objects is not related in any way with their “nature”, thus the objects ends up
to be just physical containers of the computational modules they host.

Project 2WEAR (Lalis et al. 2007, in this book) explores the concept of a personal
system that is formed by putting together computing elements in an ad-hoc fashion
using short-range radio. These elements may be embedded into wearable objects, or
have the form of more conventional portable computers and mobile phones or are sta-
tionary elements that constitute a technological infrastructure. Interactions among ob-
jects are based on services, while users can build configurations flexibly using physi-
cal proximity as an interaction selection mechanism.

Representative approaches that focus on the development of middleware systems
are BASE and Proem. BASE (Becker 2003; Weis 2006) presents a micro-kernel
based middleware that is structured in multiple components that can be dynamically
extended to interact with different existing middleware solutions and different com-
munication technologies. While these approaches provide support for heterogeneity
and a uniform abstraction of services the application programming interface requires
specific programming capabilities (e.g., proxies as API) to building applications.
Proem (Kortuem 2001) is a p2p platform supporting the application developer in cre-
ating and deploying applications. The objects managed by Proem are mainly elec-
tronic devices, such as PDAs and mobiles, and are abstracted as entities. Connectivity
between entities is determined by proximity, while connected entities can form com-
munities. Proem develops communication protocols that define the syntax and seman-
tics of messages exchanged between peers, as well as an application environment in-
cluding tools, APIs and logical structures. However, Proem does not consider multi-
hop mobile ad hoc networks, while proximity poses severe limitations in the forma-
tion of UbiComp applications.

A recent research effort, ZUMA (Baker 2006) describes a platform based on a set
of clean abstractions for users, content, and devices. The platform enables configura-
tion and organization of content and networked heterogeneous devices in a smart-
home environment. The main goals of this work is to achieve interconnection between
incompatible devices, resolve conflicting personalization issues according to the us-
ers’ properties, permissions and preferences, and achieve uniform control and ma-
nipulation of the environment. ZUMA employs the notion of multi-user optimal ex-
perience and attempts to achieve optimization by migrating applications to different
environments. However, the information the system acquires by monitoring the envi-
ronment via devices and sensor networks is combined with fixed knowledge e.g. re-
garding a person’s permissions or preferences and the produced behaviour is in fact

daisy
Rectangle

164 N. Drossos, I. Mavrommati, and A. Kameas

predetermined actions based on simple rules. This results in the system operating
without taking into consideration possible current user’s feedback, while the user
model for building pervasive applications is not very clear.

Finally, there are several approaches trying to establish some kind of integrated,
preinstalled infrastructure in a physical area, e.g. a room or building, often called an
intelligent environment (IE), in which the user and his/her mobile devices are inte-
grated on-the-fly when entering the area. A representative research effort is taken by
project Aura (Garlan 2002), which aims to “minimize distractions on user’s attention,
creating an integrated environment that adapts to the user’s context and needs”. Aura's
goal is to provide each user with an invisible halo of computing and information ser-
vices that persists regardless of location.

Project iROS (Johanson 2002), considers physically bounded spaces such as of-
fices and meeting rooms that together provide low-level functionality. The system is
modeled as an ensemble of entities that interact with each other using message pass-
ing. However, iROS does not provide explicit support for application development
and management; instead, it relies on service synchronization using an event heap.

Last but not least, project “Ambient Agoras” (Streitz et al. 2005; Streitz et al. 2007,
in this book) aims at providing situated services, place-relevant information, and feel-
ing of the place (“genius loci”) to the users, so that they feel at home in the office, by
using mobile and embedded information technology. “Ambient Agoras” aims at turn-
ing every place into a social marketplace (= “agora”) of ideas and information where
people can interact and communicate.

All these research efforts, together with various research initiatives (i.e. DC 2006)
have given us a glimpse of what the UbiComp-enabled future might perhaps bring. As
Weiser noted in his seminal paper, we don’t really know what’s coming (Weiser 1993):
“Neither an explication of the principles of ubiquitous computing nor a list of the
technologies involved really gives a sense of what it would be like to live in a world
full of invisible widgets. To extrapolate from today’s rudimentary fragments of em-
bodied virtuality resembles an attempt to predict the publication of Finnegan’s Wake
after just having invented writing on clay tablets. Nevertheless the effort is probably
worthwhile.”

3 A New Approach for Shaping UbiComp Environments

The ways that we can use an ordinary object are a direct consequence of the antici-
pated uses that object designers “embed” into the object’s physical properties. This
association is in fact bi-directional: the objects have been designed to be suitable for
certain tasks, but it is also their physical properties that constrain the tasks people use
them for. According to D. Norman (Norman 1988) affordances “refer to the perceived
and actual properties of the thing, primarily those fundamental properties that de-
termine just how the thing could possibly be used”. We therefore say that an object
may “afford” some sorts of action, and when it does so, this results in a set of natural or
“easy” relations.

Due to their “digital self”, AmI objects can now publicize their abilities in the digital
space. These include properties (what the object is), capabilities (what the object
knows to do) and services (what the object can offer to others). At the same time, they

daisy
Rectangle

 Towards Ubiquitous Computing Applications 165

acquire extra capabilities, which during the formation of UbiComp applications, can
be combined with capabilities of other AmI objects or adapt to the context of opera-
tion. Thus, AmI objects offer two new affordances to their users:

• Composeability: artifacts can be used as building blocks of larger and more
complex systems. Composeability is perceived by users through the presentation
-via the object’s digital self- of the object’s connectable capabilities, and thus
provide users the possibility to achieve connections and compose applications of
two or more objects.

• Changeability: artifacts that possess or have access to digital storage can change
the digital services they offer. In other words, the tangible object can be partially
disassociated from the artifact’s digital services, because the latter result from
the execution of stored programs.

Both these affordances are a result of the ability to produce descriptions of properties,
abilities and services, which carry information about the artifact in the digital space.
This ability improves object / service independence, as an AmI object that acts as a
service consumer may seek a service producer based only on a service description.
For example, consider the analogy of someone wanting to drive a nail and asking not
for the hammer, but for any object that could offer a hammering service (could be a
large flat stone). In order to be consistent with the physical world, functional auton-
omy of AmI objects must also be preserved; thus, they must be capable to function
without any dependencies from other AmI objects or infrastructure.

Newman states that “Systems should inherently support the ability of users to as-
semble available resources to accomplish their tasks. ….there will always be particu-
lar combinations of functionality for which no application has been expressly written”
(Newman 2002). By considering AmI objects as resources, Newman’s statement
points out that the possible combinations of AmI objects cannot be foreseen, since
people –who create and use these objects- are inherently unpredictable.

Instead of trying to predetermine a range of likely UbiComp applications, what
seems more familiar to people’s way of acting is to make AmI objects composeable,
that is, make them capable of being easily composed as building blocks into larger
and more complex systems. In this way, designing and implementing UbiComp appli-
cations could become an apprehensible procedure that even non experts can carry out
provided that they are supported by proper end-user tools. Moreover, this approach is
also more economically viable, as new applications can be created by sharing or reus-
ing existing AmI objects, thus minimizing the need for acquiring new components.

For the AmI vision to succeed, nobody should be excluded from using UbiComp
technology or accessing UbiComp applications or system services. The designers /
users dichotomy appears again, only this time it is easier for users to act as designers
themselves. People actively participate in shaping UbiComp environments, so the
provision of models and metaphors, cognitive or semantic, is necessary to make sure
that these environments are coherent and understandable.

The UbiComp paradigm introduces several challenges for people. At first, users
will have to update their existing task models, as they will no longer interact with an
ordinary object but with a computationally enabled AmI object. Then, people will
have to form new models about the everyday objects they use. Finally, as the human-
computer interface integrates with the physical world, the prevailing human-computer

daisy
Rectangle

166 N. Drossos, I. Mavrommati, and A. Kameas

interaction paradigms (such as the direct manipulation paradigm) will be infused by
human-object interaction metaphors, thus becoming more natural.

A similarly large range of challenges are brought forward for the untrained design-
ers. The ones relating to technology have been already discussed. These are comple-
mented by the need to produce designs of controlled obtrusion, handling the new af-
fordances of objects and at the same time minimize disturbance of existing models.

Thus, we assert that on the way to realizing the AmI vision, together with the reali-
zation of ubiquitous computing technology, a conceptual framework that will bridge
the gap between system design and use is necessary. This framework must be shared
both by developers and end users so that the latter are enabled to actively shape the
ubiquitous computing environments they live in, without them being hindered by de-
sign limitations. Moreover, the visibility of the functionality of the UbiComp system
must be transparent and adapting to people; people have to remain informed and
aware, in order to build trust on the system. The framework must be complemented
with the technological platform and tools that will facilitate users’ active participation
in the adoption, formation and use of UbiComp applications.

3.1 The Gadgetware Architectural Style (GAS)

We have designed GAS (the Gadgetware Architectural Style), as a conceptual and
technological framework for describing and manipulating ubiquitous computing ap-
plications (Kameas 2003). It consists of a set of architecture descriptions (syntactic
domain) and a set of guidelines for their interpretation (semantic domain). GAS ex-
tends component-based architectures to the realm of tangible objects and combines a
software architectural style with guidelines on how to physically design and manipu-
late artefacts (we could call it “a style for tangible objects”) (Kameas 2005).

For the end-user, this model can serve as a high level task interface; for the devel-
oper, it can serve as a domain model and a methodology. In both cases, it can be used
as a communication medium, which people can understand, and by using it they can
manipulate the “disappearing computers” within their environment.

Fig. 1. GAS, an Architectural style that acts as a common referent between people, designers, and
artifacts

daisy
Rectangle

 Towards Ubiquitous Computing Applications 167

In our approach, we view the process whereby people configure and use complex
collections of interacting artifacts, as having much in common with the process where
system builders design software systems out of components. We consider the every-
day environment to contain a multitude of artifacts, which people combine and re-
combine in ad-hoc, dynamic ways. As a consequence, artifacts are treated as reusable
“components” of a dynamically changing physical or digital environment; people are
given “things” with which to make “new things”, rather than only being supplied with
fixed and un-changeable tools. The behavior of these “new things” (which are ubiqui-
tous computing applications) is neither static, nor random, as it is guided by how ap-
plications are to be used (e-Gadgets 2006).

The underlying hypothesis is that even if an individual artifact has limited func-
tionality, it can have more advanced behavior when grouped with others. Com-
poseability can give rise to new collective functionality as a result of unprecedented
but well-defined interactions among artifacts. Then the aim is to look at how collec-
tions of artifacts can be configured to work together in order to provide behavior or
functionality that exceeds the sum of their parts.

GAS defines a vocabulary of entities and functions, a set of configuration rules (for
interactively establishing associations between artifacts), and a technical infrastruc-
ture, the GAS-OS middleware (algorithms, protocols, interfaces, etc). It is conceived
so as to be compatible with the mental models of ubiquitous applications that are
maintained by artifact manufacturers (i.e. in the form of design guidelines and APIs)
or people acting as application composers (i.e. in the form of configuration rules and
constraints for composing artifact societies); it can also be represented in the collabo-
ration logic of artifacts, in the form of communication protocol semantics and algo-
rithms (Figure 1.).

GAS aims to serve as a consistent conceptual and technical referent among artefact
designers and application designers, by allowing the former to provide the building
blocks and rules for the latter to compose functional applications. It also serves as
conveyor of design semantics from design experts to application designers. Design
options and compositional constraints can be embedded in artifacts in the form of
configuration rules which guide and inform the composition and use of applications.
GAS plays the role of a vehicle that enables people to become creative shapers of
their environment - rather than passive consumers - by enabling them to create new
and emerging functionalities by composing pre-fabricated artifacts.

3.2 Harnessing the Challenges of UbiComp Environments

In this section, we shall discuss the extent to which GAS-compatible UbiComp appli-
cations meet the UbiComp system design challenges.

Heterogeneity results from the fact that components of a UbiComp system have to
be implemented using different hardware (e.g. computational boards, sensors/actuators,
etc.), operating systems, programming languages and have to communicate with other
nodes through different networks (e.g. 802.11, Bluetooth, Ethernet, infrared, etc.).
GAS confronts the heterogeneity issues with the help of GAS middleware (GAS-OS)
running on a Java virtual machine. The use of Java as the underlying platform for the
middleware facilitates its deployment on a wide range of devices from mobile phones
and PDAs to specialized Java processors, hiding the underlying computational units

daisy
Rectangle

168 N. Drossos, I. Mavrommati, and A. Kameas

and operating systems. GAS-OS also implements a driver-based mechanism to mask
the heterogeneity of sensors and actuators, while the development of a modular
JXTA-like communication module makes GAS-OS capable of working over the
most known standards, such as 802.11, Bluetooth, infrared, and Ethernet, while eas-
ily extendible to support other communication technologies as well. Thus the com-
bination of the Java platform and the GAS-OS middleware, solve to a certain extent
the heterogeneity issues that may arise when different GAS enabled artifacts need to
collaborate.

The need to support mobility is very frequent in UbiComp environments, as many
of the nodes that constitute an application may be portable or even wearable devices.
As a consequence the structure of the distributed system is changing dynamically
which may also lead to service unavailability in cases where a node offering a certain
service gets out of the application’s range. GAS-OS faces this challenge by using
short or long range wireless networking protocols depending on the application’s re-
quirements. Furthermore using hybrid routing protocols reduces the probability to
loose a moving node. Even in the case where a service eventually becomes unavail-
able GAS-OS offers service replacement functionality discovering nodes offering the
same service in order to replace the missing one.

Designing a UbiComp system to be composeable allows the nodes of the system
(e.g. artifacts) to be used as building blocks of larger and more complex systems.
GAS builds on the foundations of established software development approaches such
as object oriented design and component frameworks, and extends these concepts by
exposing them to the end-user. To achieve this, GAS defines the Plug/Synapse model
(Figure 2) which provides a high-level abstraction of the component interfaces and
the composition procedure.

Using the Plug/Synapse model GAS also achieves context awareness. Context is col-
lected independently by each artifact via its sensors, is semantically interpreted using its
stored ontology and manifested via its plugs. Synapses are the means to propagate each
artifact’s context to other components, resulting in context aware applications.

A further challenge in UbiComp systems is to preserve each object’s autonomy,
according to which artifacts must function independently of the existence of other
artifacts. Taking into consideration the ad-hoc nature of UbiComp environments
and the fact that service unavailability is a frequent phenomenon rather than an ex-
ception, object autonomy seems to be a prominent factor for keeping an application
functional. Furthermore, object autonomy makes applications more flexible and
portable as their operation does not depend on any kind of infrastructure. Preserving
object autonomy implies that even resource constraint devices would have to be self
contained. GAS-OS copes with this challenge by adapting ideas from the micro-
kernel design where only minimal functionality is located in the kernel, while extra
services can be added as plug-ins. This way all objects, even resource constraint
ones, are capable of executing the kernel which allows them to be autonomous and
participate in applications.

Preserving object autonomy is also a way to make UbiComp applications robust
and fault tolerant as the failure of one node does not necessarily mean that the whole
system fails. Other ways GAS uses to increase the system’s credibility is the provi-
sion of reliable p2p communication protocols, the replacement of services in case of
unavailability, the provision of routing protocols to increase node accessibility, etc.

daisy
Rectangle

 Towards Ubiquitous Computing Applications 169

A very important challenge in UbiComp systems is scalability. Systems must be
scalable in terms of numbers of users and services, volume data stored and manipu-
lated, rates of processing, numbers of nodes and sizes of networks and storage de-
vices. Scalability means not just the ability to operate, but to operate efficiently and
with the adequate quality of service over the given range of configurations. GAS-OS
is designed to support a large number of nodes by encompassing a lightweight com-
munication module supporting p2p asynchronous communication. In order to avoid
large messages and the resulting traffic congestion in the network, XML-based mes-
sages are used to wrap the information required for each protocol. Furthermore, poll-
ing techniques that usually cause message flooding and bandwidth reduction are
avoided. Routing is also designed as a hybrid protocol that combines a proactive and a
reactive part, trying to minimize the sum of their respective overheads.

Up to now, the ways that an object could be used and the tasks it could participate
in have usually been determined by it’s physical affordances, that are, in turn, deter-
mined by its shape, material, and physical properties. GAS enabled artifacts overcome
this limitation by producing descriptions of their properties, abilities and services in
the digital space using ontologies, thus becoming able to improve their functionality
by participating in compositions, learning from usage, thus becoming adaptive.

3.3 Plug/Synapse: The GAS Conceptual Framework

The basic concepts encapsulated in the Plug/Synapse model are:

eGadget: eGadgets are everyday physical objects enhanced with sensing, acting,
processing and communication abilities. eGadgets can be regarded as artifacts that
can be used as building blocks to form GadgetWorlds.

Plugs: From a user’s perspective, they provide for the possibility of connectivity, as
they make visible the artifacts’ properties, capabilities and services to people and to
other artifacts; they are implemented as software classes.

Synapses: They are associations between two compatible plugs, which make use of
value mappings; they are implemented using a message-oriented set of protocols.

GadgetWorld: A GadgetWorld is a dynamic distinguishable, functional configura-
tion of associated eGadgets, which communicate and / or collaborate in order to re-
alize a collective function. GadgetWorlds are formed purposefully by an actor (user
or other).

Fig. 2. The Plug Synapse model: The artifacts’ capabilities (Plugs) can be inter-associated with
invisible links (Synapses) to form ubiquitous computing applications

daisy
Rectangle

170 N. Drossos, I. Mavrommati, and A. Kameas

To achieve the desired collective functionality, one forms synapses by associating
compatible plugs, thus composing applications using artifacts as components. Two
levels of plug compatibility exist: direction and data type compatibility. According to
direction compatibility output or I/O plugs can only be connected to input or I/O
plugs. According to data type compatibility, plugs must have the same data type to be
connected via a synapse. However, this is a restriction that can be bypassed using
value mappings in a synapse (Figure 2). No other limitation exists in making a syn-
apse. Although this may mean that seemingly meaningless synapses are allowed, it
has the advantage of letting the user create associations and cause the emergence of
new behaviours that the artifact manufacturer may have never thought of. Meaning-
less synapses could be regarded as analogous to “logical errors” in a program (i.e. a
program may be compiled correctly but does not manifest the desired by the pro-
grammer behavior).

3.4 Methodology

According to AmI vision, people live in an environment populated with artifacts; they
have a certain need or task, which they think can be met or carried out by (using) a
combination of services and capabilities. Then, in this approach, they search for arti-
facts offering these services and capabilities as plugs; they select the most appropriate
ones and combine the respective plugs into functioning synapses; if necessary, they
manually adapt or optimize the collective functionality. Note that we are referring to
the selection of plugs, not artifacts, thus preserving physical independence; this selec-
tion is task-based.

Fig. 3. Combined artifacts in the UbiComp application editor

daisy
Rectangle

 Towards Ubiquitous Computing Applications 171

The use of high-level abstractions, for expressing artifact associations, allows the
flexible configuration and reconfiguration of UbiComp applications. It only requires
that they are able to communicate. Moreover, they have to run the GAS-OS middle-
ware in order to “comprehend” each-other, so that people can access their services,
properties and capabilities in a uniform way. To support people in this process and to
hide the complexity of artifact interactions, appropriate tools were developed that im-
plement the conceptual framework (Mavrommati 2004) (Figures 3 and 4). People in
that way do not need to be engaged in any type of formal “programming” in order to
achieve the desired functions.

Because synapses are formed by end-users, who are not programmers, they can
only be debugged by “trial and error” approach. In this case however, what, from a
programmer’s standpoint, may seem as erroneous behaviour, or inappropriate synapse
“programming”, from the end user’s standpoint and in certain occasions, may simply
cause the manifestation of unexpected, unprecedented, but still interesting and desir-
able system behaviour.

4 Building a Home Application

These concepts can be better illustrated if we consider the Study application example,
adopted from (Drossos 2006), which we’ll follow throughout this chapter. Let’s take a
look at the life of Pat, a 27-year old single woman, who lives in a small apartment
near the city centre and studies Spanish literature at the Open University. A few days
ago she passed by a store, where she saw an advertisement about these new aug-
mented artifacts. Pat decided to enter. Half an hour later she had given herself a very
unusual present: a few furniture pieces and other devices that would turn her apart-
ment into a smart one! On the next day, she was anxiously waiting for the delivery of
an eDesk (it could sense objects on top, proximity of a chair), an eChair (it could tell
whether someone was sitting on it), a couple of eLamps (one could remotely turn
them on and off), and some eBook tags (they could be attached to a book, tell whether
a book is open or closed). Pat had asked the seller to pre-configure some of the arti-
facts, so that she could create a smart studying corner in her living room. Her idea
was simple: when she sat on the chair and she would draw it near the desk and then
open a book on it, then the study lamp would be switched on automatically. If she
would close the book or stand up, then the light would go off.

The behavior requested by Pat requires the combined operation of the following set
of artifacts: eDesk, eChair, eDeskLamp and eBook. The properties and plugs of these
artifacts are shown in Table 1 and are manifested to Pat via the UbiComp Application
Editor tool (Mavrommati 2004), an end-user tool that acts as the mediator between
the plug/synapse conceptual model and the actual system. Using this tool Pat can
combine the most appropriate plugs into functioning synapses as shown in Figure 3.

In the case of the synapse between eDesk.ReadingActivity and eDeskLamp.Light
plugs, a data type compatibility issue arises. To make the synapse work, Pat can use
the UbiComp Editor to define mappings that will make the two plugs collaborate, as
shown in Figure 4.

daisy
Rectangle

172 N. Drossos, I. Mavrommati, and A. Kameas

Table 1. Analyzing the UbiComp Application

Artifact Properties Plugs Functional Schemas

eChair Sensing
chair occu-
pancy capa-
bility (C1)

Transmitting
object type
capability
(C2)

Occupancy:
{OUT | Boolean}

eChair.C1 read(pressure-sensor)
eChair.C2 is an attribute

Occupancy {eChair.C1, eChair.C2}

eBook Sensing
open/close
capability
(C1)

Transmitting
object type
capability
(C2)

Opened
{OUT | Boolean}

eBook.C1 read(bend-sensor)
eBook.C2 is an attribute

Opened {eBook.C1, eBook.C2}

eDesk Sensing ob-
jects on top
capability
(C1)

Sensing
proximity of
objects ca-
pability (C2)

BookOpenOnTop:
{IN | Boolean}

ChairInFront:
{IN | Boolean}

ReadingActivity:
{OUT | Boolean}

eDesk.C1 read(RFID-sensor)
eDesk.C2 read(proximity-sensor)

IF eDesk.C1 = eBook.C2 AND
eBook.C1 = TRUE
THEN BookOpenOnTop TRUE
ELSE BookOpenOnTop FALSE

IF eDesk.C2 = TRUE AND eChair.C1 =
TRUE
THEN ChairInFront TRUE ELSE
ChairInFront FALSE

IF BookOpenOnTop = TRUE AND
ChairInFront = TRUE THEN Readin-
gActivity TRUE ELSE ReadingActiv-
ity FALSE

eDesk-
Lamp

Light service
(S1)

Light:
{IN | Enumera-
tion}

IF eDesk.ReadingActivity THEN S1(on)
ELSE S1(off)

The definition of the functional schemas of the artifacts, that is the internal logic that
governs the behaviour of each artifact either when its state changes or when a synapse
is activated are predefined by the artifact developer (for our example, they are shown
in Table I). Rules that require identification of the remote artifact can be specified us-
ing the property schema information, which is available in the representation of each
of the two artifacts that participate in a synapse.

daisy
Rectangle

 Towards Ubiquitous Computing Applications 173

Fig. 4. Setting mappings between the eDesk.ReadingActivity and eDeskLamp.Light plugs

The eBook, eChair and eDesk comprise an artifact composition (GadgetWorld) whose
composite property is manifested via the ReadingActivity plug. This plug allows the
participation of this composition, in a way similar to any artifact, in other compositions.
In this way, there’s no conceptual upper limit in the structural complexity of GAS en-
abled UbiComp applications. Any GadgetWorld can be edited to extend the function-
ality of the application. For example, consider that Pat also buys an eClock and wants
to use it as a 2 hour reading notification. The eClock owns an Alarm plug that when
activated, via a synapse, counts the number of hours (which can be configured) and
then rings the alarm. To implement her idea, what Pat has to do is to use the UbiComp
Application editor to create a synapse between the ReadingActivity plug of the eDesk
and the Alarm plug of the eClock and specify the number of hours in the Properties
dialog box of the eClock.

5 GAS-OS: The GAS Middleware

To cope with heterogeneity and provide a uniform abstraction of artifact services and
capabilities we have introduced the GAS-OS middleware that abstracts the underlying
data communications and sensor/actuator access components of each part of a distrib-
uted system, so that a UbiComp application appears as an integrated system. GAS-OS
follows the Message-Oriented Middleware (MOM) approach, by providing non-
blocking message passing and queuing services. Furthermore, to handle the need to
adapt to a broad range of devices, we have adapted ideas from micro-kernel design
(Tanenbaum 1991) where only minimal functionality is located in the kernel, while
extra services can be added as plug-ins.

We assume that no specific networking infrastructure exists, thus ad-hoc networks
are formed. The physical layer networking protocols used are highly heterogeneous
ranging from infrared communication over radio links to wired connections. Since
every node serves both as a client and as a server (devices can either provide or re-
quest services at the same time), communication between artifacts can be considered
as Peer-to-Peer (P2P) (Schollmeier 2001).

daisy
Rectangle

174 N. Drossos, I. Mavrommati, and A. Kameas

The prototype of GAS-OS is implemented in Java but relies only on features avail-
able in the Java personal edition, compatible with the Sun J2ME Personal Profile.
This allows the deployment on a wide range of devices from mobile phones and
PDAs to specialized Java processors. The proliferation of systems besides classical
computers capable of executing Java, make it a suitable underlying layer providing a
uniform abstraction for our middleware.

The use of Java as the underlying platform of the middleware decouples GAS-OS
from typical operations like memory management, networking, etc. Furthermore, it
facilitates the deployment on a wide range of devices from mobile phones and PDAs
to specialized Java processors.

The combination of the Java platform and the GAS-OS middleware, hide the het-
erogeneity of the underlying artifacts, sensors, networks etc. and provides the means
to create large scale systems based on simple building blocks.

5.1 Design

The key idea behind GAS-OS is the uniform abstraction of artifact services and capa-
bilities via the plug/synapse high-level programming model that abstracts the underly-
ing data communications and access components of each part of a distributed system
(Figure 5). It isolates clients from back-end processes and decouples the application
from the network layer. Messaging and queuing allow nodes to communicate across a
network without being linked by a private, dedicated, logical connection. The clients
and servers can run at different times. Every node communicates by putting messages
on queues and by getting messages from queues.

Our approach is inspired by micro-kernels. Only minimal functionality is located
in the kernel, while extra services can be added as plug-ins. One issue in the design

Unified Distributed System of artifacts

Comm

Network

plug1 plug2

Artifact 1 Artifact 2

p2p communication

synapse
communication

sensors/
actuators,

control circuitry

Operating
System 1

Java VM

Applications, services

Networking
unit 1

Comm

Networking
unit 2

Operating
System 2

Java VM

sensors/
actuators,

control circuitry

physical
layer

GAS-OS kernel
high level
requests/
replies

GAS-OS kernel

high level
requests/
replies

Fig. 5. GAS-OS unifying a distributed system of artifacts

daisy
Rectangle

 Towards Ubiquitous Computing Applications 175

of GAS-OS was to decide on the set of minimal functionalities. The policy that was
adopted was to maintain the autonomous nature of artifacts but at the same time
make even the more resource constraint ones capable of participating to ubiquitous
applications. As a consequence, the kernel of GAS-OS accepts and dispatches
messages and manages local hardware resources and the Plug/synapse interoperability
protocols.

The GAS-OS kernel implements plugs in order to manifest the artifact’s services
and capabilities and can initiate or participate in a synapsing process using the
Plug/synapse interoperability protocol. The communication module, translates the
high-level requests/replies into messages and using low-level peer-to-peer network-
ing protocols, dispatches them to the corresponding remote service or device capa-
bility (Figure 5). The kernel is also capable of handling service and resource discov-
ery messages in order to facilitate the formation of synapses.

5.2 Architecture

The outline of the GAS-OS architecture is shown in Figure 6 (adopted from (Dros-
sos 2006), where it is presented in more detail). The GAS-OS kernel is designed to
accept and dispatch messages, manage local hardware resources (sensors/actuators),
and implement the plug/synapse interaction mechanism. The kernel is also capable of
managing service and artifact discovery messages in order to facilitate the formation
of the proper synapses.

Fig. 6. GAS-OS modular architecture

The GAS-OS kernel encompasses a P2P Communication Module, a Process Manager,
a State Variable Manager, and a Property Evaluator module as shown in Figure 6. The
P2P Communication Module is responsible for application-level communication be-
tween the various GAS-OS nodes. This module translates the high-level requests/replies
into messages and by using low-level networking protocols it dispatches them to the
corresponding remote peers. The Process Manager is the coordinator module of
GAS-OS. Some of its most important tasks are to manage the processing policies, to

daisy
Rectangle

176 N. Drossos, I. Mavrommati, and A. Kameas

accept and serve requests set by the other modules of the kernel or to initiate reactions
in collaboration with other modules, tasks which collectively serve the realization of
the Plug/Synapse model. Furthermore, it is responsible for handling the memory re-
sources of an artifact and caching information of other artifacts to improve communi-
cation performance when service discovery is required. The State Variable Manager
handles the runtime storage of artifact’s state variable values, reflecting both the
hardware environment (sensors/actuators) at each particular moment (primitive proper-
ties), and properties that are evaluated based on sensory data and P2P communicated
data (composite properties). The Property Evaluator is responsible for the evaluation of
artifact’s composite properties according to its Functional Schema. In its typical form
the Property Evaluator is based on a set of rules that govern artifact transition from one
state to another. The rule management can be separated from the evaluation logic by
using a high-level rule language and a mechanism that translates high-level rule speci-
fications to XML that can be exploited then by the evaluation logic.

The adoption of a layered modular architecture allows the replacement of a module
without affecting the functionality of the rest provided that the APIs between them
remain consistent. This principle holds for the different layers of the architecture as
well as within each layer. The modular design of GAS-OS, for example, allows the in-
tegration of up-to-date algorithms and protocols in the form of plug-in modules. Extend-
ing the functionality of the GAS-OS kernel can be achieved through plug-ins, which can
be easily incorporated to an artifact running GAS-OS, via the plug-in manager.

Fig. 7. The GAS Ontology manager

GAS Ontology (Christopoulou 2005) describes the semantics of the basic terms of our
model for UbiComp applications and their interrelations. It contains a service classifi-
cation, since the AmI objects offer various services and the demand for a semantic
service discovery mechanism in UbiComp applications is evident. Due to the facts
that AmI objects acquire different knowledge and may have limited capabilities, the
GAS Ontology was divided into two layers: the GAS Core Ontology (GAS-CO) and
the GAS Higher Ontology (GAS-HO). The GAS-CO is fairly small and provides AmI
objects with the necessary common language that they need in order to describe their
acquired knowledge represented by the GAS-HO. In that way, high-level descriptions of
services and resources independent of the context of a specific application are possible,

daisy
Rectangle

 Towards Ubiquitous Computing Applications 177

facilitating the exchange of information between heterogeneous artifacts as well as the
discovery of services.

Figure 7 demonstrates the interaction among the ontology manager and the GAS-
OS kernel. An important feature of the ontology manager is that it adds a level of ab-
straction between GAS-OS and the GAS ontology, because only the ontology man-
ager can manipulate the ontology; GAS-OS can simply query this module for infor-
mation stored into the ontology without having any knowledge about the ontology
language or its structure. GAS-OS receives from the ontology manager the necessary
knowledge stored in an AmI object’s ontology relevant to its services, in order to im-
plement a service discovery mechanism. The GAS Ontology manager using this
mechanism and the service classification can identify AmI objects that offer similar
semantically services and propose objects that can replace damaged ones.

The security manager plug-in on the other hand, when developed, will be responsi-
ble for realizing the security policies of each artifact. These policies will be encoded
as rules in the ontology, thus becoming directly available to the Process Manager. The
security manager will mediate information exchange via synapses in order to ensure
that security policies are respected.

6 The Evolution of GAS

GAS is an architectural style which represents a worldview of everyday living that di-
rectly descends from the AmI vision. In a world where all objects in our living spaces
are built according to this style, a whole new way of interacting with our environment
can emerge. The success of this vision depends both on technological advancements
that need to be made, as well as on future research on GAS-like components, such as
the conceptual framework, the middleware, the ontology, and the user editing tools.

Advancements that have to be achieved involve first of all hardware miniaturiza-
tion. If we want to consider computers “disappearing”, then it is crucial that hard-
ware units like processors, sensors, networking boards etc. become small enough so
that their actual embedding in all kinds of objects, no matter their size or shape, is
possible. Furthermore, low power consumption is essential especially for mobile
and wearable objects as it is closely related to longer battery life and object auton-
omy. This can also be promoted by the use of low power networking technologies
like short range RF or low-frequency RF, without sacrificing the quality of commu-
nication. Advancements must also be made regarding sensors not only with respect
to their size but also to their precision, fault tolerance etc. Finally, since the hard-
ware part of the eGadget is the most expensive one, efforts have to be made to re-
duce the overall cost. This will make these “augmented objects” affordable for eve-
ryday people, thus achieve their intended purpose, to be used widely in everyday
applications.

In addition, a number of enhancements in software must also be taken into consid-
eration. Software systems must target more on the human’s perspective rather than
technology itself. To achieve this, software must become adaptive to people’s needs
making UbiComp applications as usable by people as possible, reducing the required
time and effort in learning how to interact with the system. User oriented tools must

daisy
Rectangle

178 N. Drossos, I. Mavrommati, and A. Kameas

also be developed to facilitate people’s intervention in their living environments,
while keeping it simple to actually live in such environments.

Along these lines the design and development of a security/privacy module on top
of the middleware (e.g. as a plug-in) would definitely extend the functionality of
GAS-OS to realizing the security policies of each artifact as well as handle privacy is-
sues in applications, which are proved to be of utmost importance. Especially, when
envisaging a world composed of UbiComp applications executing all together, the
provision of ways to prohibit violations and undesirable interactions among them is
prominent. This module must also implement mechanisms to set digital boundaries to
the otherwise unlimited access in computational environments, in order to ensure that
as private spaces are limited by “walls” in the physical world, they will also be re-
stricted via privacy algorithms and techniques in the digital world.

Further research is also required for the development of a resource management
module, capable of dealing with physical resources scarcities by providing resource
mapping and mediation services. This module has to keep track of the available re-
sources and arbitrate among conflicting requests for those resources. Local man-
agement of those resources is already undertaken by the local operating system of
each node, thus the role of the resource management module is to globally manage
resources at the application level. Examples are allowing eGadgets lending their re-
sources under certain circumstances (e.g. certain time interval, certain QoS, etc.) to
other eGadgets which do not have the adequate resources to execute a task with the
required performance, searching for eGadgets with adequate resources before as-
signing a task, etc..

Achieving an acceptable level of quality of services is also very important in
UbiComp applications, thus a separate module ensuring that the provided services
will meet certain requirements is needed. QoS affects all layers in a UbiComp ap-
plication, from the application layer ensuring real-time system responses, stability,
constant service provision for a certain time interval, down to the networking layer
ensuring reliable communication, high data transmission rates, etc.. Dynamically
supporting QoS also contributes to adaptation, as the system dynamically changes
its parameters to maintain the required QoS level. QoS parameters vary depending
on the application, thus the QoS module should be able to receive requirements,
probably by the developer of the application, while automatic determination has to
be investigated.

Furthermore, as ecologies of collaborating artifacts are dynamically reconfigured
aiming at the accomplishment of tasks, their formation heavily depends not only on
space and time but also on the context of previous local interactions, previous con-
figured teams, successfully achieved goals or possible failures. This means that in
order to initially create, manage, communicate with, and reason about, such kinds
of emergent ecologies, we need to model and embed to these entities social mem-
ory, enhanced context memory, models of self and shared experiences. One way to
achieve this is to design and implement evolving multidimensional ontologies that
will include both nonfunctional descriptions, goals, rules and constraints of applica-
tion, as well as aspects of dynamic behaviour and interactions. A core ontology will
be open and universally available and accessible; however, during the ecology life-
time the core ontology is evolved into higher goal, application and context specific
one. Hence, ontologies describing specific application domains can be proprietary.

daisy
Rectangle

 Towards Ubiquitous Computing Applications 179

In order to make UbiComp applications as usable by people as possible, the use
of intelligent agents is an option that could possibly reduce people’s time and effort
in learning how to interact with the system. The idea is to have software agents
monitoring and learning how people actually want to use their augmented environ-
ments. Based on monitored data, agents are capable, using either rule-based or even
fuzzy logic, of inferring or even predicting the ways people expect their environ-
ment to behave.

Finally, the improvement of the existing UbiComp application editing tools
aimed at end users as well as the development of new ones is a step forward to-
wards the closest and easiest people’s involvement into shaping their living spaces.
The UbiComp Application Editor is a prototype that realizes the people’s require-
ments from GAS using the plug/synapse model (Figure 8). The experiences re-
ported after expert and user trials suggest that an architectural approach where users
act as composers of predefined components is worthwhile (Markopoulos 2004).
However, these sessions have also pointed out that further improvement is neces-
sary in the design and interaction of such tools. Providing for adaptive interfaces, to
cater for a variety of user profiles as well as augmented reality and speech inter-
faces, pose a number of challenges on the design of editing tools

Fig. 8. Test subjects using the GAS Application Editor, during a user trial session

Additional tools are also required to harness the ubiquity and the logic governing this
new type of environments. Such tools are addressed more to the developer or the ad-
vanced user rather to an everyday end-user. The purpose of these tools is to configure
certain aspects of the system’s behavior that need user intervention. Decision making is
one such aspect according to which the developer or advanced user may want to dy-
namically define or change the rules determining an individual eGadget’s or even an
application’s behavior in a high level manner. Dynamically defining QoS parameters for
an application is another aspect that can be defined or altered using tools.

All in all, there are many achievements waiting to be realized and paths to be ex-
plored in order to make computers ubiquitous and well accepted by people in their

daisy
Rectangle

180 N. Drossos, I. Mavrommati, and A. Kameas

everyday living. As Weiser noted in his article “The computer for the 21st century”
(Weiser 1991), “There is more information available at our fingertips during a walk in
the woods than in any computer system, yet people find walk among trees relaxing
and computers frustrating. Machines that fit the human environment instead of forc-
ing humans to enter theirs, will make using a computer as refreshing as taking a walk
in the woods.”

Acknowledgements

Part of the research described in this chapter was conducted in the “extrovert Gadg-
ets” project (funded under project number IST-2000-25240 in the context of the
European funded IST-FET “Disappearing Computer” initiative). The authors would
like to thank fellow e-Gadgets researchers at CTI, Tyndall and University of Essex as
well as the TU/e experts and all the experts involved in our research and studies.

References

Accord project website (2006): http://www.sics.se/accord/ (last accessed on 11/22/2006)
Baker, C.R., Markovsky, Y., van Greunen, J., Rabaey, J., Wawrzynek, J., Wolisz, A.: ZUMA:

A Platform for Smart-Home Environments. In: Proceedings of the 2nd IET Conference on
Intelligent Environments, Athens, Greece (2006)

Becker, C. et al.: BASE - A Micro-broker-based Middleware For Pervasive Computing. In:
Proceedings of the 1st IEEE International Conference on Pervasive Computing and Com-
munication (PerCom03), Fort Worth, USA (2003)

Lalis, S., Savidis, A., Karypidis, A., Gutknecht, J., Stephanides, C.: Towards Dynamic and Co-
operative Multi-Device Personal Computing. In: Streitz, N., Kameas, A., Mavrommati, I.
(eds.) The Disappearing Computer. LNCS, vol. 4500, Springer, Heidelberg (2007)

Christopoulou, E., Kameas, A.: GAS Ontology: an ontology for collaboration among ubiqui-
tous computing devices. International Journal of Human – Computer Studies 62(5), 664–
685 (2005)

Disappearing Computer initiative (2006): http://www.disappearing-computer.net (last accessed
on 11/22/2006)

Drossos, N., Goumopoulos, C., Kameas, A.: A Conceptual Model and The Supporting Mid-
dleware For Composing Ubiquitous Computing Applications. Special Issue in the Journal
of Ubiquitous Computing and Intelligence (JUCI), entitled Ubiquitous Intelligence in Real
Worlds, American Scientific Publishers (ASP) 1(2), 1–13 (2006)

e-Gadgets project website (2006): http://www.extrovert-gadgets.net (last accessed on
11/22/2006)

Edwards, W.K., Newman, M.W., Sedivy, J., Smith, T., Izadi, S.: Challenge: Recombinant
Computing and the Speakeasy Approach. In: Proceedings of the Eighth Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom 2002), pp. 279–286.
ACM Press, New York (2002)

Garlan, D., Siewiorek, D.P., Smailagic, A., Steenkistie, P.: Project Aura: Toward Distraction-
Free Pervasive Computing. IEEE Pervasive Computing Magazine 1(2), 22–31 (2002)

Holmquist, L.E., Gellersen, H.-W., Schmidt, A., Strohbach, M., Kortuem, G., Antifakos, S.,
Michahelles, F., Schiele, B., Beigl, M., Mazé, R.: Building Intelligent Environments with
Smart-Its. IEEE Computer Graphics & Applications 24(1), 56–64 (2004)

Humble, J. et al.: Playing with the Bits: User-Configuration of Ubiquitous Domestic Environ-
ments. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS,
vol. 2864, pp. 256–263. Springer, Heidelberg (2003)

daisy
Rectangle

 Towards Ubiquitous Computing Applications 181

ISTAG ISTAG in FP6: Working Group 1, IST Research Content, Final Report, available at
http://www.cordis.lu/ist/istag.htm (last accessed on 11/22/2006)

Jacquet, C., Bourda, Y., Bellik, Y.: An Architecture for Ambient Computing. In: Proceedings
of the 1st IEE International Workshop on Intelligent Environments, Colchester, UK, pp.
47–54 (2005)

Johanson, B., Fox, A., Winograd, T.: Experiences with Ubiquitous Computing Rooms. IEEE
Pervasive Computing Magazine 1(2), 67–74 (2002)

Kameas, A. et al.: An Architecture that Treats Everyday Objects as Communicating Tangible
Components. In: Proceedings of the 1st IEEE International Conference on Pervasive Com-
puting and Communications (PerCom03), Fort Worth, USA, pp. 115–122. IEEE Computer
Society Press, Los Alamitos (2003)

Kameas, A., Mavrommati, I.: Configuring the e-Gadgets. Communications of the ACM
(CACM) 48(3), 69 (2005)

Kortuem, G., Schneider, J.: An Application Platform for Mobile Ad-hoc Networks. In: Abowd,
G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001: Ubiquitous Computing. LNCS,
vol. 2201, Springer, Heidelberg (2001)

Markopoulos, P., Mavrommati, I., Kameas, A.: End-User Configuration of Ambient Intelli-
gence Environments: Feasibility from a User Perspective. In: Markopoulos, P., Eggen, B.,
Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 243–254. Springer,
Heidelberg (2004)

Mavrommati, I., Kameas, A., Markopoulos, P.: An Editing tool that manages the devices asso-
ciations. Personal and Ubiquitous Computing 8(3-4), 255–263 (2004)

Newman, M., Sedivy, J., Neuwirth, C.M., Edwards, W.K., Hong, J.I., Izadi, S., Marcelo, K.,
Smith, T.: Designing for serendipity. In: Serious Reflection on Designing Interactive Sys-
tems (ACM SIGCHI DIS2002), London, England, pp. 147–156. ACM, New York (2002)

Norman, D.A.: The Psychology of Everyday Things. Basic books, New York (1988)
Schollmeier, R.: A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer

Architectures and Applications. In: Proceedings of the IEEE 2001 International Confer-
ence on Peer-to-Peer Computing (P2P’01), Linköping, Sweden (2001), IEEE, Los Alami-
tos (2001)

Streitz, N., Röcker, C., Prante, T., van Alphen, D., Stenzel, R., Magerkurth, C.: Designing Smart
Artefacts for Smart Environments. IEEE Computer March 2005, 41–49 (2005)

Streitz, N., Prante, T., Röcker, C., van Alphen, D., Stenzel, R., Magerkurth, C., Lahlou, S., No-
sulenko, V., Jegou, F., Sonder, F., Plewe, D.: Smart Artefacts as Affordances for Aware-
ness in Distributed Teams. In: Streitz, N., Kameas, A., Mavrommati, I. (eds.) The Disap-
pearing Computer. LNCS, vol. 4500, Springer, Heidelberg (2007)

Tanenbaum, A.S. et al.: The Amoeba Distributed Operating System-A Status Report. Computer
Communications 14(6), 324–335 (1991)

Truong, K.N., Huang, E.M., Abowd, G.D., CAMP,: A Magnetic Poetry Interface for End-User
Programming of Capture Applications for the Home. In: Davies, N., Mynatt, E.D., Siio, I.
(eds.) UbiComp 2004. LNCS, vol. 3205, pp. 143–160. Springer, Heidelberg (2004)

Weis, T., Handte, M., Knoll, M., Becker, C.: Customizable Pervasive Applications. In: Interna-
tional Conference on Pervasive Computing and Communications (PERCOM) 2006, Pisa,
Italy (2006)

Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104 (1991)
Weiser, M.: Some computer science issues in ubiquitous computing. Communications of the

ACM 36(7), 75–84 (1993)

daisy
Rectangle

	Introduction
	An Overview of Existing UbiComp Approaches
	A New Approach for Shaping UbiComp Environments
	The Gadgetware Architectural Style (GAS)
	Harnessing the Challenges of UbiComp Environments
	Plug/Synapse: The GAS Conceptual Framework
	Methodology

	Building a Home Application
	GAS-OS: The GAS Middleware
	Design
	Architecture

	The Evolution of GAS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

